Cortical adaptation to a chronic micro-electrocorticographic brain computer interface.

نویسندگان

  • Adam G Rouse
  • Jordan J Williams
  • Jesse J Wheeler
  • Daniel W Moran
چکیده

Brain-computer interface (BCI) technology decodes neural signals in real time to control external devices. In this study, chronic epidural micro-electrocorticographic recordings were performed over primary motor (M1) and dorsal premotor (PMd) cortex of three macaque monkeys. The differential gamma-band amplitude (75-105 Hz) from two arbitrarily chosen 300 μm electrodes (one located over each cortical area) was used for closed-loop control of a one-dimensional BCI device. Each monkey rapidly learned over a period of days to successfully control the velocity of a computer cursor. While both cortical areas contributed to success on the BCI task, the control signals from M1 were consistently modulated more strongly than those from PMd. Additionally, we observe that gamma-band power during active BCI control is always above resting brain activity. This suggests that purposeful gamma-band modulation is an active process that is obtained through increased cortical activation.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multiple roles of ventral premotor cortex in BCI task learning and execution

Motor-based brain-computer interface (BCI) use is a learned skill that has been shown to involve multiple cortical areas, though it only explicitly requires modulation of a small area of cortical tissue. The roles being played by these other areas have not yet been determined. In this study, using an electrocorticographic (ECoG) model, we apply a novel computational approach to quantifying the ...

متن کامل

Decoding covert spatial attention using electrocorticographic (ECoG) signals in humans

This study shows that electrocorticographic (ECoG) signals recorded from the surface of the brain provide detailed information about shifting of visual attention and its directional orientation in humans. ECoG allows for the identification of the cortical areas and time periods that hold the most information about covert attentional shifts. Our results suggest a transient distributed fronto-par...

متن کامل

Using the electrocorticographic speech network to control a brain-computer interface in humans.

Electrocorticography (ECoG) has emerged as a new signal platform for brain-computer interface (BCI) systems. Classically, the cortical physiology that has been commonly investigated and utilized for device control in humans has been brain signals from the sensorimotor cortex. Hence, it was unknown whether other neurophysiological substrates, such as the speech network, could be used to further ...

متن کامل

A review on EEG based brain computer interface systems feature extraction methods

The brain – computer interface (BCI) provides a communicational channel between human and machine. Most of these systems are based on brain activities. Brain Computer-Interfacing is a methodology that provides a way for communication with the outside environment using the brain thoughts. The success of this methodology depends on the selection of methods to process the brain signals in each pha...

متن کامل

A Large-Scale Interface for Optogenetic Stimulation and Recording in Nonhuman Primates

While optogenetics offers great potential for linking brain function and behavior in nonhuman primates, taking full advantage of that potential will require stable access for optical stimulation and concurrent monitoring of neural activity. Here we present a practical, stable interface for stimulation and recording of large-scale cortical circuits. To obtain optogenetic expression across a broa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 33 4  شماره 

صفحات  -

تاریخ انتشار 2013